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Field theoretical representation of the Hohenberg-Kohn free energy for fluids
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~Received 14 July 1999!

To go beyond Gaussian approximation to the Hohenberg-Kohn free energy playing the key role in the
density functional theory~DFT!, the density functional integral representation would be relevant, because the
field theoretic approach to perturbative calculations becomes available. Then we first derive the associated
Hamiltonian of the density functional, explicitly including the logarithmic entropy term, from the grand
partition function expressed by configurational integrals. Moreover, two things are done so that the efficiency
of the obtained form may be revealed: we demonstrate that this representation facilitates the field theoretic
treatment of the perturbative calculation and, further, compare our perturbative formulation with that of the
DFT. @S1063-651X~99!51611-5#

PACS number~s!: 64.10.1h, 83.70.Hq, 05.40.2a, 05.70.Ce
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The Hohenberg-Kohn~HK! free energy, in terms of the
density functional theory~DFT! @1#, is the natural extension
of the Helmholtz one. First we see what is meant by this
the primary definition of the HK free energy@1#.

Let us start with a grand canonical system that has a
ume of V and is surrounded by a reservoir of a chemi
potentialm in the unit of the thermal energykBT @2#. We
consider one-component classical particles, to keep notat
as simple as possible, and define the grand potentialV in the
form

e2V5 (
N50

`
1

N! E (
i 51

N

dr i

3expF2H(
i , j

U~r i ,r j !1(
i

J~r i !2mNJ G , ~1!

with r being the position vectors of particles,J the external
potential, andU(r i ,r j ) the two-body interaction potential fo
particlesi and j. In the thermodynamic limit, the Helmholt
free energyF of a canonical system withN̄ particles can be
obtained fromV by a Legendre transform such thatF5V

1mN̄, whereN̄ is the averaged total number given by t
relation N̄52]V/]m in the grand canonical formalism
Similarly, the HK free energyFHK is defined by replacingN̄
in this mapping with the averaged density fieldw~r ! given in
terms of the shifted external fieldJ̃(r )5J(r )2m as

w5^r̂&5
dV

d J̃
, ~2!

wherer̂[( i 51
N d(r2r i) is the densityoperatorand^¯& rep-

resents the ensemble average with the weight in Eq.~1!: the
Legendre transform ofV with use ofw and J̃ yields

FHK~w!5V~ J̃!2w J̃. ~3!
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Since relation~3! is reciprocal,FHK exactly satisfies the
equationdFHK /dw52 J̃.

In spite of the above generality and tractability of the H
free energyFHK , the introduction ofFHK has been mostly in
the context of the DFT. Indeed, the DFT is one of the m
powerful tools for investigating not only spatially inhomog
neous states for simple liquids but also a variety of m
complex fluids~e.g., liquid crystals and polymers! @1#. How-
ever, it is also to be noted that there are cases where
largely fluctuating systems such as fluids near critical po
are beyond its scope. This is seen from the followi
Ramakrishnan-Youssouff form@3#:

DFHK
A 5E dr wA~r !ln

wA~r !

r̄M
A

2 1
2 E dr dr 8C~2!~r2r 8; r̄M

A !DwA~r !DwA~r 8!,

~4!

whereDFHK
A is the excess free energy around an arbitr

uniform densityr̄M
A in an A-domain ~e.g., liquid region in

liquid-vapor coexisting state!, C(2)(r2r 8; r̄M
A ) is the second-

order direct correlation function, andDwA5w2 r̄M
A is the

density difference betweenr̄M
A andw obtained from the self-

consistent equation,

w~r !5exp@C~1!~r ;w!2 J̃~r !#. ~5!

The merit of this form~4! is that short-scale correlation
particularly crucial for fluids, may be taken into elabora
account via the input of the direct correlation function; th
insertion is of great benefit due to the extensive study of
Orstein-Zernike integral equation@4#. For all that, the limi-
tation is also to be realized that the direct correlation fu
tions as input effectively consider only quadratic fluctuatio
in case these are the solutions of the integral equation wi
the mean spherical approximation including the equivalen
i.e., Percus-Yevick one to hard-core potentials@5#.

A systematic way of going beyond the Gaussian appro
mation to the HK free energy is to start with the dens
functional integral representation so that the field theore
R5048 © 1999 The American Physical Society
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approach to the perturbative calculations may be availa
Then this paper’s purpose is, first of all, to transfo
straightforwardly the primary definition ofFHK expressed by
configurational integrals to the functional integral repres
tation: ~i! to derive from Eq.~1! with relation ~3! the fol-
lowing expression:

e2FHK5E Dr exp@2$Hsad~r!2w J̃%#, ~6!

Hsad~r!5E dr dr 8 1
2 r~r !U~r ,r 8!r~r 8!1r~r !J̃

1r~r !ln r~r !2r~r !, ~7!

wherer denotes an instantaneous quantity~not operator! of
density.

The justification of Hamiltonian~7! is the main result of
this paper; one has had few grounds so far for form~7!,
except for the primitive discussion that division of ideal g
systems intocells produces the entropy term, i.e., the la
two terms on the right-hand side of Eq.~7! @6,7#, though the
above expression~7! comprising the familiar free energ
functional is trivial intuitively and hence the correspondi
form for the Helmholtz free energy has often been usea
priori @7–9#.

~i! As usual, let us insert into the position vectors’ for
~1! of the grand partition function, the identity with use
the auxiliary field c~r !: *dr dc exp@ic(r2r̂)#51. Then
Eq. ~1! reads

e2V5E Dr Dc exp@2H~r,c!#, ~8!

H~r,c!5E dr dr 8 1
2 rUr81rJ2 irc2exp~2 ic1m!,

~9!

with r(r )5r andr(r 8)5r8. Previous treatments of Eqs.~8!
and ~9! have conventionally proceeded to perform Gauss
integration overr for fixed c : the Hubbard-Stratonovich
transformation@10,11#. The reduction is exact indeed, an
hence there appears to be no choice but to do so. As a m
of fact, however, Gaussianapproximation~this also consid-
ering quadratic contribution! would be applicable toc for
given r: we have the alternatives in mapping Eqs.~8! and
~9! to more tractable forms.

Then, taking the latter approach, Eqs.~8! and ~9! are re-
duced to

e2V5E Dr exp~2Hsad! ~10!

and Hsad(r) given by Eq.~7!; Hsad is equal to Hamiltonian
~9! along the saddle point path forc, i.e., H(r,csad) with
csad satisfying the saddle point equation th
dH(r,c)/dcuc5csad

50. To be noted in Eq.~10!, the excess

grand potentialDV52 ln@*Dce2r(dc)2/2# arising from qua-
dratic fluctuations ofdc5c2csad is absent. This is due to
the following evaluation: Gaussian integration overc, car-
ried out by discretized fields,r l and c l , yields the appar-
ently nontrivial term of the Lee-Yang type@12# such that
e.

-

t

n

tter

DV5 lim
a3→0

1

a3 E dr
1

2
ln~r la

3!, ~11!

in the continuum limit@or the vanishing limit of the lattice
constanta defined asa35(r0)21[V/N̄#, where the other
trivial term has been formally absorbed into the integral m
sureDr following the standard procedure@12#. The excess
potential DV given by Eq. ~11!, however, converges to
0.5(N2N̄), half of the difference between the actual tot
numberN and the most probable valueN̄, as found from the
expansion that ln(rla

3)5(rl2r0)a
31O@$(rl2r0)a

3%2#. Thus
DV is negligible in the thermodynamic limit.

In the next step, we equate the functional derivat
dV/d J̃ using the representation~10! with the averaged den
sity w obtained from both relation~2! and the position vec-
tors’ expression~1! of V: we put w[^r̂&5^r&c , with
^¯&c denoting the average under the weight in Eq.~10!.
Then the Legendre transform~3! leads to expressions~6! and
~7!, in question, of the HK free energyFHK ; the principal
purpose of this paper has been accomplished.

What we have to do, in addition, is to show virtues of t
now justified representations~6! and~7!. Then two things are
done in the remainder: ~ii ! we demonstrate that this form
facilitates the field theoretic treatment of the perturbative c
culation, and~iii ! to compare our perturbative formulatio
with that of the DFT.

~ii ! Let us return to the grand potentialV given by Eq.
~10!. The saddle point equation thatdHsad(r)/drur5rM ,J50

50 in the absence of external potential,J(r )[0, produces
the mean-field density,

rM~r !5expH 2E dr 8U~r ,r 8!rM~r 8!1mJ . ~12!

Expanding aroundrM the logarithmic term in the Hamil-
tonian differenceDH5Hsad(r)2Hsad(rM), we obtain

e2V5e2Hsad~rM !E D r̃ exp~2DH !, ~13!

DH~ r̃ !5E dr dr 8
1

2
r̃S U1

d@r2r 8#

rM
D r̃81 r̃J1E~ r̃ !,

~14!

wherer̃5r2rM , the fluctuation of the total number is ne
glected~i.e., *dr r̃'0), andE( r̃) denotes the terms highe
than quadratic ones due to the logarithmic expansion.

The HamiltonianDH given by Eq.~14! has some charac
teristics other than standard field theoretic formulatio
@12#: One is that the free part ofDH includes the position-
ally dependent coefficient 1/rM(r ), indicating that our for-
malism is applicable to investigating density fluctuations
structured fluids where the mean-field density itself is n
uniform but spatially oscillates. Next,DH reveals that higher
terms E( r̃) in one-component systems arise from entro
allowing thermally activated hopping processes and not fr
interactions@15#. Finally it is noted thatJ̃ is reduced toJ.
This is why the external potentialJ is not included in deter-
mining the mean-field density from the saddle point eq
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tion; if we take as a reference density the mean-field on
the presence ofJ, DH has no external source to create
generating functional.

Of particular interest is the first property; this, for e
ample, makes it possible to generalize Debye-Hu¨ckel equa-
tion as Fisheret al. propose recently@13,14#. The present
paper, however, restricts itself to the simplified systems
have only the short-range potentials and consist of ma
scopic subsystems~or domains! inside which the mean-field
densityrM(r ) take constant values except the boundaries
typical situation is the coexisting phase of two subsyste
~such as liquid and gas!.

Consequently, neglect of the interfacial energy redu
DH to the sum of the contributions from the domains. W
the volume and the mean-field density in ans domain (s
5A,B,...) denoted byVs and r̄M

s , respectively~where the
overbar is for emphasizing the constancy!, the functional in-
tegral in Eq.~13! reads in terms of the Fourier transforme
densityrs(k)5(1/Vs)*dr exp(ik•r )rs(r ),

E D r̃ exp~2DH !

5 )
s5A,¯

C expS 1

2

d

drs DF
s d

drsD
3expF2

Vs

~2p!3 E dk$E~rs!1rsJ%GU
rs50

,

~15!

where further shifted density is abbreviated tors, C is a
constant independent ofJ, and the propagatorDF

s is given in
the usual form (DF

s )215u01(1/r̄M
s )1u2k2 due to the con-

ventional expansion of the short range potential,U5u0
1u2k2, in thek space.

Expression~15! implies that Feynman graphs are no
available. Thus the HK free energyFHK gets into the spot-
light, becauseFHK given by Eqs.~6! and ~7! includes the
generating functional of then-point vertex functionalsG (n)

consisting only of one-particle irreducible diagrams as w
as the standard field theory@12#: putting that Dws5w
2 r̄M

s in ans-domain (s5A,B,...) as in Eq.~4! and ignoring
the number fluctuation~i.e., *dr Dws'0) as before,FHK
reads

FHK5 (
s5A,¯

FMF
s 1DFHK

s , ~16!

FMF
s 5E dr dr 8

1

2
r̄M

s U r̄M8
s1 r̄M

s ln r̄M
s 2 r̄M

s , ~17!

DFHK
s 52 (

n>2

`
1

n! E dr1¯drnG~n!~r1 ,¯ ,rn ; r̃M
s !

3Dws~r1!,¯ ,Dws~rn!.

~18!

It is to be noted in the above representations thatFHK cor-
rectly includes the mean-field Helmholtz free energyFMF in
the absence of external potentialJ, in contrast to previous
density functional integral formulations@11# which take as a
reference the free energy for the density smeared over
in

at
o-

A
s

e

ll

he

entire system. As a result, the present formalism may fo
on appropriate density deviation from not a smeared va
but a mean-field oner̄M

s , and therefore makes the perturb
tive approximation more precise than previous approach

~iii ! Even at the starting point, there exists a differen
between the DFT and our formalism: the former separa
the entropy term,*dr w ln w2w, from FHK beforehand,
whereas the latter does the mean-field free energyHsad(rM)
@see Eq.~13!#. Such distinct types of theories, though, ha
correspondence in some cases as will be seen below.

Most successful is the absence of interactions betw
particles, i.e.,U50, where the field theoretical represent
tion is identified with the DFT formalism. To see this, w
consider the grand potentialV. In the DFT,V is reduced to
V5*dr wex ln wex1wexJ̃ with the averaged densitywex

5exp(2J̃) obtained from relation~5! when C(1)50. While
the saddle point equation,dHsad/dw50, explicitly including
the external potentialJ also produces the density equal
wex, and therefore the deviation ofV in the functional inte-
gral formalism from that for the DFT is given in the firs
evaluation as2 ln$*Ddr exp@2(dr)2/2wex#%, being the same
kind as the excess grand potentialDV. Then repeating the
similar discussion to that after Eq.~11!, the difference may
be ignored and thus the equivalence in the case ofU50 is
assured.

For UÞ0, on the other hand, let us compare both rep
sentations of the excess HK free energyDFHK

A in an A do-
main up to quadratic terms forDwA. For the DFT formula-
tion ~4!, the expansion of the logarithmic term yields

DFHK
A 5E dr dr 8

1

2 S 2C~2!1
d@r2r 8#

r̄M
A DDwA~r !DwA~r 8!.

~19!

In applying the mean spherical approximation~MSA! to the
calculation of the direct correlation function for hard
core~-Yukawa! or square well fluids@4#, we have only to put
2C(2)5U in Eq. ~19!, because the other condition that th
pair distribution function is to be set to zero inside ha
spheres with the diameterd is formally satisfied due to the
potential ofU5` for r2r 8<d. On the other hand, the func
tional integral representation~18! under the tree approxima
tion reduces toDFHK

A 5DH(DwA)2DwAJ @12#, and there-
fore takes the same form up to quadratic terms as the D
expression~19! with use of the MSA for the above men
tioned fluids@see also Eq.~14!#.

The conformity forUÞ0 contrarily results in highlighting
some merits of the field theoretic forms~16! to ~18!, which
we describe in conclusion. One virtue other than the D
using the MSA is that the density functionalintegral repre-
sentation may still take fluctuations into more elaborate c
sideration systematically, by including loop graphs in E
~18!. Moreover, we would like to stress that a reference d
sity, this being merely an arbitrary value in the DFT@see the
statement just after Eq.~4!#, is obtained from relation~12!
self-consistently in our formalism.
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