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Field theoretical representation of the Hohenberg-Kohn free energy for fluids
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To go beyond Gaussian approximation to the Hohenberg-Kohn free energy playing the key role in the
density functional theoryDFT), the density functional integral representation would be relevant, because the
field theoretic approach to perturbative calculations becomes available. Then we first derive the associated
Hamiltonian of the density functional, explicitly including the logarithmic entropy term, from the grand
partition function expressed by configurational integrals. Moreover, two things are done so that the efficiency
of the obtained form may be revealed: we demonstrate that this representation facilitates the field theoretic
treatment of the perturbative calculation and, further, compare our perturbative formulation with that of the
DFT.[S1063-651X99)51611-5

PACS numbeps): 64.10+h, 83.70.Hq, 05.46-a, 05.70.Ce

The Hohenberg-KohriHK) free energy, in terms of the Since relation(3) is reciprocal, F,,x exactly satisfies the
density functional theoryDFT) [1], is the natural extension equationsF /S¢= — 4.
of the Helmholtz one. First we see what is meant by this via |n spite of the above generality and tractability of the HK
the primary definition of the HK free energg]. free energyF . , the introduction of  has been mostly in
Let us start with a grand canonical system that has a volthe context of the DFT. Indeed, the DFT is one of the most
ume of V and is surrounded by a reservoir of a chemicalpowerful tools for investigating not only spatially inhomoge-
potential . in the unit of the thermal energksT [2]. We  neous states for simple liquids but also a variety of more
consider one-component classical particles, to keep notationgmplex fluids(e.g., liquid crystals and polymergL]. How-
as simple as possible, and define the grand potefitialthe  ever, it is also to be noted that there are cases where the
form largely fluctuating systems such as fluids near critical points
are beyond its scope. This is seen from the following
Ramakrishnan-Youssouff forfi3]:
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with r being the position vectors of particlesthe external
potential, andJ(r;,r;) the two-body interaction potential for
particlesi andj. In the thermodynamic limit, the Helmholtz

free energyF of a canonical system witN particles can be
obtained from() by a Legendre transform such that Q)

+uN, whereN is the averaged total number given by the
relation N=—0Q/dw in the grand canonical formalism.

Similarly, the HK free energ¥ . is defined by replacindy
in this mapping with the averaged density figitt) given in

terms of the shifted external fielt(r)=J(r)— u as

4

whereAFﬁK is the excess free energy around an arbitrary
uniform densityﬁ','\*,I in an A-domain (e.g., liquid region in
liquid-vapor coexisting sta}eC(z)(r—r’;ﬁﬁA) is the second-
order direct correlation function, andcpA:<p—F',§‘,| is the
density difference betweés}; and ¢ obtained from the self-
consistent equation,

e(r)=exg CV(r;¢)=J(r)]. (5)

50 The merit of this form(4) is that short-scale correlation,
e=(p)=—, (2 particularly crucial for fluids, may be taken into elaborate
6J account via the input of the direct correlation function; this

wherep=3N , 5(r—r,) is the densityoperatorand(: - ) rep-
resents the ensemble average with the weight in(Bqthe
Legendre transform of) with use ofe andJ yields

Frx(e)=0(J)— ¢J. (3
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insertion is of great benefit due to the extensive study of the
Orstein-Zernike integral equatidd]. For all that, the limi-
tation is also to be realized that the direct correlation func-
tions as input effectively consider only quadratic fluctuations
in case these are the solutions of the integral equation within
the mean spherical approximation including the equivalence,
i.e., Percus-Yevick one to hard-core potent{d&l$

A systematic way of going beyond the Gaussian approxi-
mation to the HK free energy is to start with the density
functional integral representation so that the field theoretic
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approach to the perturbative calculations may be available. 1 1 5
Then this paper’'s purpose is, first of all, to transform AQ=lim ggf dr 5 In(pa”), (12)

straightforwardly the primary definition df,x expressed by a3-0

configurational integrals to the functional integral represen- ) . . . .
tation: (i) to derive from Eq.(1) with relation (3) the fol- the continuum limit[or the vanishing limit of the lattice

lowing expression: constanta defined asa®=(p,) “'=V/N], where the other
trivial term has been formally absorbed into the integral mea-

CF _ = sureDp following the standard procedufé?2]. The excess
e HK_] Dpexd —{Hsad p) ~ @J}], 6) potential AQ given by Eq.(11), however, converges to
0.5(N—N), half of the difference belween the actual total
H p):f drdr’2p(nU(r,r")p(r' ) +p(r)J numberN and the most probable vald& as found from the
sad ’ P expansion that In{a®)=(p—po)a+O0[{(n—pg)al?]. Thus
+p(r)Inp(r)—p(r), (7) AQ is negligible in the thermodynamic limit.

In the next step, we equate the functional derivative

wherep denotes an instantaneous quan(itpt operaton of 501 83 using the representatigii0) with the averaged den-
density. sity ¢ obtained from both relatiof2) and the position vec-
The justification of Hamiltoniar{7) is the main result of tors’ expression(1) of : we put ¢=(p)=(p)., with
this paper; one has had few grounds so far for fdifn  (---). denoting the average under the weight in Et0).
except for the primitive discussion that division of ideal gasThen the Legendre transfor() leads to expressior(§) and
systems intocells produces the entropy term, i.e., the last(7), in question, of the HK free energy, ; the principal
two terms on the right-hand side of E@) [6,7], though the  purpose of this paper has been accomplished.
above expressioii7) comprising the familiar free energy ~ What we have to do, in addition, is to show virtues of the
functional is trivial intuitively and hence the corresponding now justified representatiori§) and(7). Then two things are
form for the Helmholtz free energy has often been uaed done in the remainder: (i) we demonstrate that this form
priori [7-9]. facilitates the field theoretic treatment of the perturbative cal-
(i) As usual, let us insert into the position vectors’ form culation, and(iii) to compare our perturbative formulation
(1) of the grand partition function, the identity with use of with that of the DFT.

the auxiliary field y(r): [dpdyexdiy(p—p)]=1. Then (i) Let us return to the grand potentif)d given by Eg.
Eqg. (1) reads (10). The saddle point equation théHsa({p)/5p|p:pM =0
=0 in the absence of external potentid(y)=0, produces
e—ﬂ:J DpDyexd —H(p, )], (8)  the mean-field density,

H(P,I,U):f dl’dl”%pUp"i‘pJ—ipl//—eXF(—il,b-l-,u), pM(r):eXp{_f dr,U(rvr,)pM(r,)—’_M . (12)

© Expanding aroundgp,, the logarithmic term in the Hamil-

with p(r)=p andp(r')=p'. Previous treatments of Eq®)  tonian differenceAH =Hsa{p) ~Hsadpu), we obtain

and (9) have conventionally proceeded to perform Gaussian

integration overp for fixed ¢: the Hubbard-Stratonovich e*Q:e*HsaAPM)f DP exp(—AH), (13
transformation[10,11). The reduction is exact indeed, and

hence there appears to be no choice but to do so. As a matter L
of fact, however, Gaussiampproximation(this also consid- ~ , e ~ o~ ~

ering quadratic contributionwould be applicable tay for AH(p)_f dr dr 2°F v P PITERD),
givenp: we have the alternatives in mapping E¢3. and (14

(9) to more tractable forms.

Then, taking the latter approach, E¢8) and (9) are re- wherep=p—py, the fluctuation of the total number is ne-
duced to glected(i.e., fdr p~0), andE(p) denotes the terms higher
than quadratic ones due to the logarithmic expansion.

The HamiltonianAH given by Eq.(14) has some charac-
teristics other than standard field theoretic formulations
. _ o [12]: One is that the free part dfH includes the position-
andHs.dp) given by Eq.(7); Hsagis equal to Hamiltonian  ajly dependent coefficient 4¢(r), indicating that our for-

(9) along the saddle point path faf, i.e., H(p,/sad With  malism is applicable to investigating density fluctuations in
sag satisfying the saddle point equation that structured fluids where the mean-field density itself is not
SH(p,¥)/ 8¢, =0. To be noted in E(10), the excess yniform but spatially oscillates. NexAH reveals that higher
grand potentialAQz—In[fD«//e*P(‘s‘/’)z’z] arising from qua- terms_ E(p) in one-co_mponent systems arise from entropy
dratic fluctuations ofsy= y— is,qis absent. This is due to allowing thermally activated hopping processes and not from
the following evaluation: Gaussian integration overcar-  interactions[15]. Finally it is noted that) is reduced tal.

ried out by discretized fieldsy, and ¢, yields the appar- This is why the external potentidlis not included in deter-
ently nontrivial term of the Lee-Yang tydd 2] such that mining the mean-field density from the saddle point equa-

+5[r—r’]

e_Q:f Dp exp(—Hsad (10)
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tion; if we take as a reference density the mean-field one irntire system. As a result, the present formalism may focus

the presence of, AH has no external source to create aon appropriate density deviation from not a smeared value

generating functional.

Of particular interest is the first property; this, for ex-
ample, makes it possible to generalize Debyekéili equa-
tion as Fisheret al. propose recently13,14. The present

but a mean-field ongy,, and therefore makes the perturba-

tive approximation more precise than previous approaches.
(i) Even at the starting point, there exists a difference

between the DFT and our formalism: the former separates

paper, however, restricts itself to the simplified systems thathe entropy term,fdr ¢ In o—¢, from Fp beforehand,
have only the short-range potentials and consist of macrovhereas the latter does the mean-field free energypy)

scopic subsystem®r domain$ inside which the mean-field

[see Eq.(13)]. Such distinct types of theories, though, have

densityp(r) take constant values except the boundaries. Acorrespondence in some cases as will be seen below.
typical situation is the coexisting phase of two subsystems Most successful is the absence of interactions between

(such as liquid and gas

particles, i.e.,U=0, where the field theoretical representa-

Consequently, neglect of the interfacial energy reduceion is identified with the DFT formalism. To see this, we
AH to the sum of the contributions from the domains. With consider the grand potenti€. In the DFT,Q is reduced to

the volume and the mean-field density in amlomain 6
=A,B,...) denoted by andpy,, respectively(where the
overbar is for emphasizing the constapdpe functional in-
tegral in Eq.(13) reads in terms of the Fourier transformed
density p3(k) = (1) fdr exp(k-r)pS(r),

jD'ﬁexp(—AH)
“ I ¢ 16 96
Teta R 257 gy

pS=0
(19

Ve
XeXF{—(ZT):;,f dk{E(pS)-i-pS\]}}

where further shifted density is abbreviatedd®y C is a
constant independent df and the propagatak? is given in
the usual form 42) ~t=uy+ (1/p}y;) +u,k? due to the con-
ventional expansion of the short range potentidkug
+u,k?, in thek space.

Expression(15) implies that Feynman graphs are now
available. Thus the HK free enerdyyk gets into the spot-
light, because~,x given by Egs.(6) and (7) includes the
generating functional of the-point vertex functionald™ ("

Q= [dr geyIn @oyt perd With the averaged densitype,

=exp(-J) obtained from relation5) when CY)=0. While
the saddle point equatiodH,4 ¢ =0, explicitly including
the external potential also produces the density equal to
¢ex, and therefore the deviation 6f in the functional inte-
gral formalism from that for the DFT is given in the first
evaluation as- In{fDdp exd —(8p)?/2¢e,]}, being the same
kind as the excess grand potentisl). Then repeating the
similar discussion to that after E¢L1), the difference may
be ignored and thus the equivalence in the case s is
assured.

For U#0, on the other hand, let us compare both repre-
sentations of the excess HK free enetyff 1 in an A do-
main up to quadratic terms fak¢”. For the DFT formula-
tion (4), the expansion of the logarithmic term yields

%)AW)MAM

1
AFR= f dr dr’—( -C@+
2 M
(19

In applying the mean spherical approximatidiSA) to the
calculation of the direct correlation function for hard-
corg-Yukawa or square well fluid$4], we have only to put
—C@=U in Eq. (19, because the other condition that the

consisting only of one-particle irreducible diagrams as wellpair distribution function is to be set to zero inside hard

as the standard field theoyl2]: putting that A p®=¢
—py in ans-domain 6=A,B,...) as in Eq(4) and ignoring
the number fluctuatiorii.e., fdr Ap3~0) as beforeF
reads

FHK=8§”. Fur+t AFS, (16

1
:Asz dr dr' SEUB+H AN N —ph. (17

1
AR _nzz n! dry--dr L™ (ry,- .10 Bi)

XA@(ry), - A@(ry).
(18

It is to be noted in the above representations that cor-
rectly includes the mean-field Helmholtz free eneFgy in
the absence of external potentiilin contrast to previous
density functional integral formulatiorjd 1] which take as a

spheres with the diameteris formally satisfied due to the
potential ofU =0 for r—r’=<d. On the other hand, the func-
tional integral representatiofd8) under the tree approxima-
tion reduces tAAF{,=AH(A¢")—A¢"J [12], and there-
fore takes the same form up to quadratic terms as the DFT
expression(19) with use of the MSA for the above men-
tioned fluids[see also Eq(14)].

The conformity forU # 0 contrarily results in highlighting
some merits of the field theoretic forni$6) to (18), which
we describe in conclusion. One virtue other than the DFT
using the MSA is that the density functionategral repre-
sentation may still take fluctuations into more elaborate con-
sideration systematically, by including loop graphs in Eq.
(18). Moreover, we would like to stress that a reference den-
sity, this being merely an arbitrary value in the DfSEe the
statement just after Eq4)], is obtained from relatiori12)
self-consistently in our formalism.

We acknowledge the financial support of the Ministry of
Education, Science, Culture, and Sports of Japan under Grant

reference the free energy for the density smeared over thido. 10450032.



RAPID COMMUNICATIONS

PRE 60 FIELD THEORETICAL REPRESENTATION OF TH. .. R5051
[1] For reviews, see R. Evans, Adv. Phy&8, 143 (1979; Y. Quantum Physics: A Functional Integral Point of View
Singh, Phys. Re207, 351 (1991, and references therein. (Springer-Verlag, Berlin, 1987 and references therein.
[2] Hereafter, all of the potentialg, , J, U, F, andH) are inthe  [11] In case one starts with the canonical partition functionthe
kgT unit. Helmholtz free energy the mappings to density functional
[3] T. V. Ramakrishnan and M. Yussouff, Phys. Revl® 2775 integral forms have been performed, but the associated Hamil-
(1979. tonians are of power series forms; see, for polymeric systems,
[4] J. P. Hansen and I. R. McDonaldheory of Simple Liquids T. Ohta and K. Kawasaki, Macromolecul&$, 2621 (1986);
(Academic Press, London, 1986 R. Holyst and T. A. Vilgis, Phys. Rev. BO, 2087(1994.
[5] H. C. Andersen and D. Chandler, J. Chem. PH&. 1497  [12] J. Zinn-JustinQuantum Field Theory and Critical Phenomena
(1972); A. L. Kholodenko,ibid. 91, 4849(1989. (Oxford University Press, Oxford, 1996
[6] K. Kawasaki, Physica 208 35 (1994). [13] B. P. Lee and M. E. Fisher, Phys. Rev. L&, 2906(1996;
[7] T. Zhou, e-print cond-mat/9902280. Europhys. Lett.39, 611 (1997; M. N. Tamashiro, Y. Levin,

[8] For simple ionic systems, see D. di Caprio, J. Stafiej, and J. P.  and M. C. Barbosa, Physica 268 24 (1999.
Badiali, J. Chem. Phys108 8572 (1998, and references [14] H. Frusawa and R. Hayakawanpublishegl

therein. [15] The two-body interaction potentidl in the case of one-
[9] For polymeric systems, see H. Frusawa and R. Hayakawa, @ component systems is not an averaged but bare one. Therefore,
Phys. Rev. B58, 6145(1998, and Ref[19] therein. the pairwise additivity does not mean the Kirkwood superpo-

[10] Mathematical discussions are seen in J. Glimm and A. Jaffe,  sition and would not be so crude an approximation.



